Journal club presentation by M.Dehghani

Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation

Stewart Heitmann , Michael Rule, Wilson Truccolo, Bard Ermentrout

Link to paper


Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.

About This Event

Start date05/23/2018 10:00
End date05/23/2018 12:00



  • unnamed

    Mini-symposium Held at IUST

    In July, 2017 we held a one-day mini-symposium at IUST, for the interchange of scientific expertise and findings between different projects of the our lab and external collaborating teams. The lectures were organized in two panels: Invited talks (given by principle investigators cooperating with our lab) and Project presentations (delivered by PhD students). Topics ranging all the way from the dynamics of neural coding in primate brain to computational approaches in modeling the neural system were covered through these lectures. Importantly we had the honor to host Dr. Fatemeh Bakouie (Shahid Beheshti University), Dr. Zeinab Fazlali (IPM School of Cognitive Sciences), Prof. Dr. Shahriyar Gharibzadeh (Amirkabir University of Technology) and Dr. Marzieh Zare (IPM School of Computer Sciences), to present their ongoing research lines in the symposium.
  • 20160914_192500

    The surgery center has been launched in the Cognitive Neurobiology Lab

    We are pleased to announce that on Sep 2016, we launched a non-human primate surgery center in IPM School of Cognitive Sciences. The surgery room is equipped with the most modern equipment enabling primate neuroscientists to carry out the most sophisticated brain surgeries. These surgeries are aimed at implanting either fixation or neural implants. Facilities such as accurate human-level monitoring and anesthesia systems enable us to carry out surgeries with the highest standards of animal welfare.
  • F. Zareayan’s winning support to attend FENS 2016

    Fatemeh Zareayan won the prize to attend the 10th Forum of Neuroscience Conference to be held in Copenhagen July 2-6, 2016 from the Iranian Cognitive Sciences and Technologies Council

  • PhD defence

    "Moein Esghaei successfully defended his thesis at IPM. His thesis addressed the role of low frequency oscillatory activities of brain in the process of selective attention."